Designing Partial Differential Equations for Image Processing by Combining Differential Invariants∗
نویسندگان
چکیده
Partial differential equations (PDEs) have been successful for solving many problems in image processing and computer vision. However, designing PDEs usually requires high mathematical skills and good insight to the problems. In this paper, we propose a framework for learning a system of PDEs from real data. Compared to the traditional approaches to designing PDEs, our framework requires much less human intelligence. We assume that the system consists of two PDEs. One controls the evolution of the output and the other is for an indicator function that helps collect global information. As the PDEs should be shift and rotationally invariant, they must be functions of differential invariants that are shift and rotationally invariant. Currently, we assume that the PDEs are simply linear combinations of the fundamental differential invariants up to second order. The combination coefficients can be learnt from real data via an optimal control technique. The exemplary experiments show that the PDEs, designed in our unified way, can solve some image processing problems reasonably well. Hence our framework is very promising. We expect that with future improvements our framework could work for more image processing/computer vision problems.
منابع مشابه
Image Restoration Using A PDE-Based Approach
Image restoration is an essential preprocessing step for many image analysis applications. In any image restoration techniques, keeping structure of the image unchanged is very important. Such structure in an image often corresponds to the region discontinuities and edges. The techniques based on partial differential equations, such as the heat equations, are receiving considerable attention i...
متن کاملPartial Differential Equations applied to Medical Image Segmentation
This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملImage Zooming using Non-linear Partial Differential Equation
The main issue in any image zooming techniques is to preserve the structure of the zoomed image. The zoomed image may suffer from the discontinuities in the soft regions and edges; it may contain artifacts, such as image blurring and blocky, and staircase effects. This paper presents a novel image zooming technique using Partial Differential Equations (PDEs). It combines a non-linear Fourth-ord...
متن کاملA Differential Operator Approach to Equational Differential Invariants - (Invited Paper)
Hybrid systems, i.e., dynamical systems combining discrete and continuous dynamics, have a complete axiomatization in differential dynamic logic relative to differential equations. Differential invariants are a natural induction principle for proving properties of the remaining differential equations. We study the equational case of differential invariants using a differential operator view. We...
متن کامل